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OSCILLATIONS OF A RIGID BODY WITH A TOROIDAL CAVITY FILLED 

WITH A VISCOUS LIQUID* 

M.L. PIVOVAROV andF.L. CHERNOUS'KO 

An investigation is carried out of the damping of planar oscillations of 
a rigid body in which there is a toroidal cavity filled with a liquid of 
arbitrary viscosity. The diameter of the torus is assumed to be 
significantly larger than the diameter of the tube from which it is 
formed. On the assumption that the moment of inertia of the liquid is 
much smaller than that of the rigid body, an analytical expression is 
derived for the amplitude of the oscillations of the rigid body, and the 
optimal damping parameters are determined. For the case of a liquid 
with high viscosity the solution is compared with the well-known 
asymptotic solution, describing the oscillations of a rigid body with a 
cavity ofarbitraryshape filled with a viscous liquid at small Reynolds 
numbers. 

Problems concerning the motion of a body with a viscous liquid 
contained in thin tubes were considered by Gromeka and Joukowski. In 
recent years these problems have aroused renewed interest in connection 
with the use of tube dampers filled with a viscous liquid to suppress 
oscillations in spacecraft /l-9/. The most commonly used cavity shape 
in such dampers is toroidal. 

1. Statement of the probkm. We consider the planar oscillations of a rigid body, in 
which there is a toroidal cavity entirely filled with a viscous incompressible liquid of 
density pd;, about an axis parallel to the axis of the torus. To simplify matters we will 
assume that the centre of the torus is at the centre of mass of the system or at a fixed 
(stationary) point, if the latter exists. We shall assume that E = a/R<4, where R is 
the radius of the torus and a the radius of the tube forming the torus. 

We introduce a cylindrical system of coordinates with its origin at the centre of the 
torus, the z axis directed along the axis of the torus and the coordinate lines r and q in 
a plane perpendicular to the z axis. For small E the components of the absolute velocity 
vector V satisfy the conditions V,< Y,, Vl< V,. We will therefore drop the terms containing 

v,, vz in the Navier-Stokes equations for Y,, Then the equations of motion for the body 
with the liquid become 

where A is the principal central moment of inertia of the rigid body about the z axis, CD 
is the angle of rotation of the body about the z axis, M sin cf, is the restoring torque, N is 
the moment of the forces exerted by the liquid on the body, 'v is the kinematic viscosity of 
the liquid, and S is the surface if the torus. 

System (1.1) will subsequently be reduced to an integrodifferential equation describing 
the oscillations of the rigid body. 

2. ~ntegr~~~~er~t~~ equation. We will transform the coordinates by putting F = 3: -!- 
R in the last two equations of (1.1) and reduce the system to non-dimensional form by means 
of the substitutions 

7 = wt, u = V,I(oR), 5 = ?/a, 5 I da, ~2 = fillA 
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where w is the frequency of small oscillations of the rigid body. We obtain 

where, as before, E = a/R; the dot denotes differentiation with respect to 2. 
If the solution of the boundary-value problem (2.2) is sought as a series in powers of 

e, the expression for the principal terms is 

U' = v (was)-l (aauiaga + awag*), 1~ ~C+bl~l = bl* (2.3) 

We shall seek a solution of problem (2.3) satisfying the initial condition u it=,, = 0. 

In the E, 5 plane we introduce coordinate p,6 by putting f = pcose, c= psine. Thanks 
to the symmetry of problem (2.3), for zero initial data u depends only on p and z, and Eqs. 
(2.3) become 

Following Joukowski's approach, we will find the solution of 
~a = 1, and then use the Duhamel integral /lo, 111. 

We now take a Laplace transformation of (2.4). The solution 
which is bounded at p = 0 and satisfies the boundary condition, 

u* (p, P) = 1, (P~~)/l~(~~~~ 

where I, is the Bessel function of an imaginary argument of order 
formation parameter. 

By the inversion formula, we have 

problem (2.4) such that 

of Eq.(2.4) in transforms, 
has the form 

zero and p is the trans- 

The singular points of the integrand are a pole at zero and poles at a denumerable 
sequence of points pk- the roots of the equation r,(d$&)= 0. We will use the following 

notation: c0 is the residue of the integrand at p = 0 and C, is the residue atp%. Noting 
that I, (5) -+l as x-0 and changing to Bessel functions of a real argument of zero and 
first orders, we obtain 

cg = 1, Ck. = -2sxp (--hk%$) J, (~~*)/I~~~, (x,)t (2.6) 

where & are the zeros of X0. Eqs.(2.5) and (2.6) yield the solution of the boundary-value 
problem (2.4) when us=l. When us = @ we use the Duhamel integral to obtain 

In this approximation the viscous force exerted by the liquid on the torus wall per unit 
area is p+v caTi,/a (up)1 jl-x (we recall that p* is the density of the liquid) and the torque 

of the forces 

the fact that 

exerted by the liquid on the rigid body is IV ==-&+@~~p,v (&&p) Ip=rL Using 

J,’ = -Jr, we deduce from (2.71, (2.1) that 

(2.8) 

3, ITire ease of a ta, mass of Liquid. 
hand side of Eq.(2.8) we proceed as follows: 

To obtain a bound for the value g of the right- 
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Here we have taken into account that /12/ 

h,-* + hi‘9 + . . . = 'I,, a !(4vJ = B/.4, B = 2naR3a2p, (3.1) 

where B is the moment of inertia of the liquid about the axis of the torus. 
On the other hand, it follows from (2.8) that K < 1 + ) g 1 S+ 1 f pK, which yields K < 

(1 - pp. Thus I g I < p (1 - p)-“. 
Let us assume that the mass of the liquid is significantly less than that of the body; 

then ~((1 and g=O(p). We consider small oscillations. To analyse Eq.(2.8) we use the 
method of averaging. 

In the unperturbed problem (p = 0, lrft I< 1) we have 

Choose a,, b, as new variables in problem 12.8). After 
some standard algebra, omitting terms of second order in n on 
the right, we obtain 

Carrying out the integration and dropping terms of the second order in p, we get 

(3.3) 

that 
Averaging the right-hand sides of Eqs.(3.3) with respect to + from 0 to CO, we find 

Integrating these equations with due allowance for the value of cr as in (2.8), we 
obtain the following expression for the amplitude of the oscillations: 

The damper will be optimal if f is a maximum. The figure represents the function f(v,,)- 
The optimum value of the non-dimensional viscosity v,, is 0.158. 

4. The case of a strongly viscous liquid. Let us assume now that (vO> 1). From (3.5) 
we derive the equality 

f=& +O(-$), F=F,exp(-St) (4.1) 

(using the fact that /12/ hr+ f haV4 $- . . . = ti32). 
On the other hand, it was shown in 1131 that in the case of a strongly viscous liquid 

small oscillations of our system are described by the equation 

Ja*cwat~ + Mt51 = --p*P (v~)-~~~~~/~~ f4.2) 

where J = A + R is the moment of inertia of the body with the liquid, and P is a component 
of a certain tensor which depends only on the shape of the cavity. For a torus this component 
is 
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P = - 2n ~PW(r,s)drdz, D: ((r- R)P -j-za<aaa} (4‘31 
D 

Here W is the solution of the boundary-value problem (I' is the boundary of the disk D) 

We shall now work out an approximate expression for P in the case of a torus with E = 
alR < 1 and compare the solution of Eq.(4.2) with (4.1). 

In (4.4) we make the substitution 
r=.X+R (4.5) 

and transform to non-dimensional variables via the transformation 

This gives 

(4.6), 

We will seek a solution of the boundary-value problem (4.7) as a series in powers of the 
small parameter a : 

52 (%, E;) = e-‘&f%, 5) + &I (%r 5) i- E& f%, 6) -i- p.*& (%, 5) + . . e (4.82 

St, jr = 0, k = -1. 0,1,2, . . . (4.9) 

Substituting (4.8) into Eq.(4.7), expanding the coefficients of the latter in powers of 
e and equating coefficients of like powers, we obtain 

A&, = 1 
AS, = -aQ_,ia% +% 

AQ, = %(aQ_,ia%) - an&?% i_ Q., 
AQ, = -%e(aQ_,la%) -t % (aada%) - dQ,mj - ZgL, + Q* 

*...................*..,....... 

(4.10) 
(4.21) 
(4.12) 
(4.13) 

with the boundary condition (4.9). 
The boundary-value problem (4.10), (4.9) describes Poiseuille flow. Substituting its 

SolUtiOn Q_, = (p"- 1)/4, p" = %% + %"‘ into (4.11) we obtain 

AS& = %I2 

Solutions of this and the following boundary-value problems satisfying 
can be sought as linear combinations of the functions 

(p2 - I)"%", IL = 1, 2, . . ., n = 0, 1, 2... . 

Omitting the details, we will present the final results. The solution 
(4.9) is 

Q, = (ps - 4) %/lS 

(4.14) 

coditions (4.9) 

of problem (4.14), 

(4.15) 

Substituting (4.151 into (4.12) and solving the corresponding boundary-value problem, we 

get 
n, = - (p" - l)/64 -I- (p2 - I)"/128 -t_ (p" - 1) %V32 (4.16) 

Finally, substituting (4.16) into (4.13), we find that 

S===&(P~- 11% - &(P"- *)%a-- &(p'- lfB% 

We make the substitutions (4.5), 
coordinates % = pcos6, % = psinti. 

(4.6) in the integral (4.3) and transform to polar 
Using the series (4.8), we obtain 

(4.17) 
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It should be mentioned that a representation of the tensor component characterizing the 
effect of a strongly viscous liquid on the motion of the body /13/ has been derived for a 
torus with arbitrary ratio e= idA /2/. This representation takes the form of an infinite 
series of improper integrals of special functions, with coefficients that are roots of certain 
transcendental equations. Another available result 121 is the first term in the asymptotic 
expansion of the tensor for small L - for P this is identical with the first term in (4.17). 

Eq.(4.2) describes damped oscillations with amplitude 

(4.18) 

Substituting the principal term of the expansion (4.17) into (4.181, with allowance for 
the expression (3.1) for the moment of inertia B of the liquid and the fact that the quotient 
B/A is small, we finally arrive at (4.1). 

5. EzrmrpZe. Consider the damping of the oscillations of a small space satellite stabil- 
ized by the Earth's magnetic field. Let A-5kg.m2 and let the characteristic frequency 
of oscillations about the force line be O= IJOZB set-' (a period equal to 4 min). Assume 
that the radius of the toroidal tube a and the kinematic viscosity Y are chosen optimally, 
~.e., in (3.5) Y,, = Y/(w?)== 0.158. Then the effect of the damper will be maximal when the 
actual moment of inertia B of the liquid is a maximum. The value of B is bounded by the 
admissible mass of liquid and the dimensions of the torus, which depend on the conditions in 
the spacecraft. In order to cut down the volume of the damper, a liquid of maximum possible 
density should be used. 

Let the admissible radius of the torus be R = O.lm, and suppose that the selected 
damping liquid is mercury: Y = 0.11 x 10" m'/sec. Then the optimum value of Y,, is obtained 
at a tube diameter 2a= 1 cm. The moment of inertia B of the liquid is 0.0067 kg.m' (with 
a mass of liquid of 0.67 kg). Substituting these quantities into (3.51 we obtain a damping 
constant of 1.5x lo5 sec. 
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